Analysis of Information-Based Nonparametric Variable Selection Criteria
نویسندگان
چکیده
منابع مشابه
Variable Selection Using SVM-based Criteria
We propose new methods to evaluate variable subset relevance with a view to variable selection. Relevance criteria are derived from Support Vector Machines and are based on weight vector ‖w‖2 or generalization error bounds sensitivity with respect to a variable. Experiments on linear and non-linear toy problems and real-world datasets have been carried out to assess the effectiveness of these c...
متن کاملVariable Selection using Non-Standard Optimisation of Information Criteria
The question of variable selection in a regression model is a major open research topic in econometrics. Traditionally two broad classes of methods have been used. One is sequential testing and the other is information criteria. The advent of large datasets used by institutions such as central banks has exacerbated this model selection problem. This paper provides a new solution in the context ...
متن کاملVariable Selection with Akaike Information Criteria : a Comparative Study
In this paper, the problem of variable selection in linear regression is considered. This problem involves choosing the most appropriate model from the candidate models. Variable selection criteria based on estimates of the Kullback-Leibler information are most common. Akaike’s AIC and bias corrected AIC belong to this group of criteria. The reduction of the bias in estimating the Kullback-Leib...
متن کاملNonparametric Regression using Bayesian Variable Selection
This paper estimates an additive model semiparametrically, while automatically selecting the significant independent variables and the app~opriatc power transformation of the dependent variable. The nonlinear variables arc modeled as regression splincs, with significant knots selected fiom a large number of candidate knots. The estimation is made robust by modeling the errors as a mixture of no...
متن کاملVariable Selection in Nonparametric Additive Models.
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2020
ISSN: 1099-4300
DOI: 10.3390/e22090974